Comparison of Boosting Based Terrain Classification Using Proprioceptive and Exteroceptive Data

نویسندگان

  • Ambroise Krebs
  • Cédric Pradalier
  • Roland Siegwart
چکیده

The terrain classification is a very important subject to the all-terrain robotics community. The knowledge of the type of terrain allows a rover to deal with its environment more efficiently. The work presented in this paper shows that it is possible to differentiate terrains based on their aspects, using exteroceptive sensors, as well as based on their influence on the rover’s behavior, using proprioceptive sensors. Using a boosting method (AdaBoost), these two sets of classifiers are trained and applied independently. The resulting dual algorithm identifies offline the nature of the terrain on which the vehicle is virtually driving and classifies it according to categories previously labeled, such as sand or grass. Due to the good results obtained for the classification based solely on each type of sensor, this paper concludes that the correlation between data from proprioceptive and exteroceptive sensors could be used for further applications. This paper is a summarized version of the one presented at the ISER conference.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Self-Supervised Terrain Classification for Planetary Surface

Exploration Rovers 2 3 4 Christopher A. Brooks, Karl Iagnemma 5 Department of Mechanical Engineering 6 Massachusetts Institute of Technology 7 Cambridge, MA 02139 8 [email protected], [email protected] 9 10 Abstract 11 12 For future planetary exploration missions, improvements in autonomous rover 13 mobility have the potential to increase scientific data return by providing safe 14 access to geol...

متن کامل

Learning to Visually Predict Terrain Properties for Planetary Rovers

For future planetary exploration missions, improvements in autonomous rover mobility have the potential to increase scientific data return by providing safe access to geologically interesting sites that lie in rugged terrain, far from landing areas. This thesis presents an algorithmic framework designed to improve rover-based terrain sensing, a critical component of any autonomous mobility syst...

متن کامل

Proprioceptive localization for a quadrupedal robot on known terrain

We present a novel method for the localization of a legged robot on known terrain using only proprioceptive sensors such as joint encoders and an inertial measurement unit. In contrast to other proprioceptive pose estimation techniques, this method allows for global localization (i.e., localization with large initial uncertainty) without the use of exteroceptive sensors. This is made possible b...

متن کامل

Learned Stochastic Mobility Prediction for Planning with Control Uncertainty on Unstructured Terrain

Motion planning for planetary rovers must consider control uncertainty in order to maintain the safety of the platform during navigation. Modelling such control uncertainty is difficult due to the complex interaction between the platform and its environment. In this paper, we propose a motion planning approach whereby the outcome of control actions is learned from experience and represented sta...

متن کامل

Real-Time Recognition of the Terrain Configuration to Improve Driving Stability for Unmanned Robots

Methods for measuring or estimating ground shape by a laser range finder and a vision sensor (Exteroceptive sensors) have critical weaknesses in terms that these methods need a prior database built to distinguish acquired data as unique surface conditions for driving. Also, ground information by Exteroceptive sensors does not reflect the deflection of ground surface caused by the movement of UG...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008